翻訳と辞書 |
theory of equations : ウィキペディア英語版 | theory of equations
In algebra, the theory of equations is the analysis of the nature and algebraic solutions of algebraic equations (also called ''polynomial equations''), which are equations defined by a polynomial. The term "theory of equations" is mainly used in the context of the history of mathematics. ==History== Until the end of 19th century, "theory of equations" was almost synonymous with "algebra". For a long time, the main problem was to find the solutions of a single non-linear equation in a single unknown. The fact that a complex solution always exists is the fundamental theorem of algebra, which was proved only at the beginning of 19th century and does not have a purely algebraic proof. Nevertheless, the main concern of the algebraists was to solve in terms of radicals, that is to express the solutions by a formula which is built with the four operations of arithmetics and nth roots. This was done up to degree four during the 16th century. Scipione del Ferro and Niccolò Fontana Tartaglia discovered solutions for cubic equations. Gerolamo Cardano published them in his 1545 book ''Ars Magna'', together with a solution for the quartic equations, discovered by his student Lodovico Ferrari. In 1572 Rafael Bombelli published his ''L'Algebra'' in which he showed how to deal with the imaginary quantities that could appear in Cardano's formula for solving cubic equations. The case of higher degrees remained open until the 19th century, when Niels Henrik Abel proved that some fifth degree equations cannot be solved in radicals (Abel–Ruffini theorem) and Évariste Galois introduced a theory (presently called Galois theory) to decide which equations are solvable by radicals.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「theory of equations」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|